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Kinetics of particle ensembles with variable charges is investigated. It is shown that the energy of such
ensembles is not conserved in the interparticle collisions. The case when the equilibrium charge depends on the
particle coordinate is studied, and the collision integral describing the momentum and energy transfer in
collisions is derived. Solution of the resulting kinetic equation shows that the system is unstable—the mean
thermal energy exhibits explosion-like growth, diverging at a finite time.
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I. INTRODUCTION

Many problems in physical kinetics are treated using
Hamiltonian description.Non-Hamiltonian kinetics, on the
other hand, is far less well developed—for the simple reason
that such systems have not received as much attention(al-
though they are ubiquitous) and have usually been dealt with
by separating time scales and reverting back to the Hamil-
tonian formalism.

One of the remarkable features distinguishing complex
(dusty) plasmas from usual(multispecies) plasmas is that
charges on the grains are not constant, but fluctuate in time
around some equilibrium value which, in turn, is some func-
tion of spatial coordinates[1–6]. The fluctuation(charging)
time scale and the mean charge generally depend on the
charging mechanism operating in a plasma(see, e.g.,[3,5]).
Ensembles of particles with variable charges are non-
Hamiltonian systems and, therefore, the use of thermody-
namic potentials to describe them is not really valid. An ap-
propriate way to investigate their evolution is to use the
kinetic approach.

Both in laboratory and space plasmas, the time scales as-
sociated with random fluctuations and establishing the equi-
librium charge are normally many orders of magnitudes
shorter than the time scales related to the grain dynamics
[1,3,7–9]. In many cases this fact allows us to separate the
charging kinetics from the kinetics of the grains themselves
(e.g.,[2,4]), and consider dust grains as an ensemble of par-
ticles with givencharacteristics of charge variation.

II. KINETICS

Kinetics of ensembles with variable charges have not
been studied systematically so far, and the main objective of
this paper is to demonstrate some extraordinary features pe-
culiar to such systems. In order to highlight properties of
ensembles with variable charges, let us consider the simplest
case when no external fields are present. Then the particle
kinetics is solely determined by the mutual collisions. The
kinetic equation is

ḟ = Stf , s1d

where Stf denotes the collision integral. The major peculiar-

ity of particles with variable charges is that thecollisions do
not conserve the energy, because charge variations cause
fluctuations of the interparticle forces during the collisions.
For instance, when the equilibrium charge of a particle is a
function of coordinates,qsr d, then the charge variations are
associated with the particle motion and characterized by the
gradient=q. For a pair of particles interacting within the
rangel (screening length), the average displacement during
the interaction is also of the order of,l. Therefore, the
relative variation of the particle energy caused by a collision
is udEu /E,u=q/qul. Note that random variations of charges
associated with temporal fluctuations of, e.g., local plasma
density/temperature, UV radiation, etc.[3], also contribute to
the energy variations[10].

A. Collision integral

In this paper we investigate the kinetics of particles with a
spatial dependence of the equilibrium charge—the charge
variations are due to the particle motion, random fluctuations
are neglected. The latter formally corresponds to the limit of
infinitely short charging time[3,7,8] (the case of charge fluc-
tuations related to dust discreteness, i.e., finite charging time,
will be considered in future work[10]). In order to simplify
the calculations, yet keeping the physical essence of the ef-
fect, we will consider the kinetics of a small(gaseous) frac-
tion of “light” particles [with spatially dependent charge
qsr d] added to “heavy” particles(with chargeQ). This situ-
ation, when particles have very different masses, is quite
normal for complex plasma experiments(e.g., the “Plasma
Kristall Experiment-Nefedov” experiment onboard Interna-
tional Space Station[11], where the particle sizes differ by
factor of 2, or the follow-up experiment “PK-3 Plus,”where
this range is about 20), and is ubiquitous in space dusty
plasmas(where the grains range from tenths of microns up to
meters in size, e.g.,[12]).

Due to the small concentration of light particles(and also
their relatively small charges), one can neglect their mutual
collisions and consider only pair collisions with the heavy
particles. Under these approximations the collision integral
becomes linear. Moreover, if the relative variation of the
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particle energy in collisions is small—namely, if the follow-
ing inequality for the charge gradient is satisfied,

e ; u ¹ q/qul ! 1 s2d

(i.e., spatial scale of the charge variation is much larger than
the screening length), then one can divide the collision inte-
gral into two parts—corresponding to the variation of the
absolute value of momentum, and of the momentum
direction—and present the first part in the differential
Fokker-Planck form, expanding over the smallness param-
eter e. For simplicity we neglect the motion of the large
particles. Then the collision integral is[13,14]

Stf =
1

p2

]

] p
FAp2f +

]

] p
sBp2fdG

+ N
p

m
E ffsp,u8d − fsp,udg ds. s3d

The charge(of light particles) is assumed to have constant
gradient=q; the distribution function is symmetric with re-
spect to the gradient, and thus depends on two variables: the
absolute value of the momentump and the angleu between
the gradient and the momentum vector. The differential cross
sectionds corresponds to the scattering betweenu and u8,
with cosu8=cosu cosa+sinu sina cossw−w8d expressed
in terms of the scattering anglea [14]. As usual, the Fokker-
Planck coefficients[13], A=−kdpl /dt and B=ksdpd2l /2dt,
are averaged over many collisions occurring withindt. Varia-
tion (of the absolute value) of momentum in a collision,dp,
is related to the energy variation viadE.pdp/m. From Eq.
(A2) we obtain dp/p,escosu+cosu8dSsad, which yields
after averaging the coefficients

A = −
ep2

m,
c1 cosu,

B =
e2p3

2m,
sc2 cos2 u + c3d. s4d

It is convenient to introduce the free path,=sNstrd−1 ex-
pressed in terms of the momentum transfer cross section,
str=es1−cosadds, and the concentration of large particles,
N. The free path is generally a function ofp (e.g., the
screened Coulomb interaction often reduces to the hard
spheres limit, with a weak logarithmic dependence onp for
the free path[15]). The Fokker-Planck coefficients are deter-
mined by the dimensionless “scattering constants:”

c1 =E s1 + cosadSsadds/str,

c2 = 1
2 E s1 + 4 cosa + 3 cos2 adS2sadds/str,

c3 = 1
2 E sin2 a S2sad ds/str.

B. Polynomial expansion

We expand the distribution function into a series of Leg-
endre polynomials and keep the first two terms:

fsp,u,td = f0sp,td + f1sp,tdcosu. s5d

Substituting Eqs.(4) and (5) in Eq. (3), after the usual pro-
cedure[14] we derive from Eq.(1) the following expressions
for the symmetric and asymmetric parts of the distribution
function:

ḟ0 = S1

3
c2 + c3D e2

mp2

]2

] p2Sp5

,
f0D −

1

3
c1

e

mp2

]

] p
Sp4

,
f1D ,

ḟ1 = −
p

m,
f1 − c1

e

mp2

]

] p
Sp4

,
f0D . s6d

One can see from Eqs.(6) that there is a hierarchy of time
scales characterizing the evolution off0 and f1: The time
scale for the asymmetric part is equal to the collision-free
time tcoll=m, /p. The symmetric part evolves at much longer
time scales,e−2tcoll. This allows us to decouple Eqs.(6).
From the second equation we derive

f1sp,td . − c1
e,

p3

]

] p
Sp4

,
f0Ds1 − e−pt/m,d. s7d

Equation (7) demonstrates that after a few collisions(at t
*tcoll) the asymmetric part rapidly converges to the quasi-
stationary solution determined by the kinetics of the “slow”
symmetric part. Substituting this asymptotic solution forf1
into the first equation(6), we finally derive

ḟ0 . S1

3
c1

2 +
1

3
c2 + c3D e2

mp2

]2

] p2Sp5

,
f0D −

1

3
c1

2 e2

mp2

]

] p
Sp4

,
f0D .

s8d

C. Analysis of moments: Energy growth

Although Eq. (8) can be solved analytically, it is much
more useful to analyze the kinetics of the derived equation in
terms ofp-moments. The zero moment yields the conserva-
tion of the particle density, 4pep2f0 dp=1 (we normalized
the distribution function to unity). The second moment
corresponds to the mean kinetic energyE
=4pesp2/2mdp2f0 dp. We obtain

Ė = e2S2

3
c1

2 +
1

3
c2 + c3DS4p

m2D E sp5/,df0dp. 0. s9d

The derived equation shows that nonlinears~e2d terms in the
Fokker-Planck expansion cause agrowth of mean energy
irrespective of the initial state, i.e., the system is always
unstable.

It is remarkable that the most common type of the
dissipation—the friction caused by collisions with neutral
gas molecules—can be easily incorporated in our calcula-
tions in the Fokker-Planck form[13,14], with the following
additional term to the collision integral(3):
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Stnf = g
]

] p
Spf + mTn

] f

] p
D ,

whereTn is the temperature of the molecules andg is the
frictional damping rate in the corresponding Langevin equa-
tion. The friction yields the additional term, −2gsE− 3

2Tnd, in
Eq. (9) and, hence, sets up a threshold for the instability. To
derive this threshold, we evaluate the integral in Eq.(9).
From the Hölder inequality we obtain ep5f0 dp
ù sep4f0dpd3/2sep2f0dpd1/2~E3/2. Normalizing the energy by

the neutral gas temperature,Ẽ=E /Tn, and assuming for sim-
plicity ,=const, we derive the following equation for the
lower energy bound:

Ẽ˙ ù 2Î2e2s 2
3c1 + 1

3c2 + c3dktcolll−1Ẽ3/2 − 2gsẼ − 3
2d,

s10d

where ktcolll=, /vT is the “mean” collision-free time, with

vT=ÎTn/m. From the requirementẼ˙ .0 for any Ẽ we obtain
the sufficient condition for the instability,

gktcolll ,
3
2e2s2c1 + c2 + 3c3d. s11d

The solution of Eq.(10) diverges at a finite(critical) time,

Ẽ~ s1−t / tcrd−2, provided Eq.(11) is satisfied. The critical
time scales astcr,e−2ktcolll. Thus, we have an explosionlike
energy growth. We should note, however, that at sufficiently
high energies the free path is no longer a constant or a weak
(logarithmic) function of momentum[15]—it starts increas-
ing with p, and once,spd grows faster than linearly, the
instability is saturated.

Equation(11) allows us to evaluate the physical condi-
tions when the charge gradients should cause the energy
growth. For instance, let us consider typical laboratory ex-
periments with microsize particles of temperature,1 eV
and density,103 cm−3 embedded into a plasma with the
screening lengthl,1 mm. The resulting mean collision free
time is ktcolll,3310−2 s [15]. Assuming the spatial scale of
the “natural” charge gradients in the presheath region about
.5 mm, i.e., five times larger than the screening length[16],
we get for the smallness parametere2,3310−2 and, hence,
the instability condition isg&1 s−1. This corresponds to
fairly realistic pressures about 1 Pa or less. “Artificial”
charge gradients at much shorter spatial scales can be easily
created by means of, e.g., external UV radiation[17,18] par-
tially focused on the dust clouds, and then the heating should
be possible at much higher pressures. In space plasmas(e.g.,
in the interstellar clouds, where the charge gradients can be
created by inhomogeneous cosmic radiation[1]) the condi-
tion to trigger the heating might be substantially relaxed, due
to much lower ambient pressure.

Important remark: The total energy consists of the thermal
and drift parts,E=T+K, with K=kpl2/2m (due to symmetry,
the drift is along the charge gradient). After a few collisions,
the mean drift momentumkpl~ep3f1dp converges to the
quasi-stationary value[see Eq.(7)]. In the case,=const the
drift asymptotically vanishes: For instance, assuming the
Boltzmann distribution forf0 we derive using Eq.(7) that

kpl~ t−4 at t* ktcolll. Therefore,K→0 and, hence,E→T,
i.e., the particles are completely thermalized due to colli-
sions. If the free path is a function of momentum,,=,spd,
then kpl converges with time to some nonzero value
~ees,p8 /,dp4f0 dp. Assuming logarithmic(or power) depen-
dence for ,spd we obtain: ,p8 /,~p−1, and, hence, the
mean drift momentum tends to ~eep3f0 dp
øesep2f0 dpd1/2sep4f0 dpd1/2,eÎE. Therefore, the drift part
of the energy remains relatively small,K~e2E, i.e., most of
the energy is always transmitted into particle heating.

D. Applicability

In our calculations we neglected the explicit dependence
of the solution on spatial coordinates. In fact, spatial charge
inhomogeneity,qsr d, implies the spatial dependence of the
cross section in the collision integral(3) and results in the
appearance of an additional termsp /md= f in Eq. (1). This
inhomogeneity, however, is weak and is determined by the
smallness parametere. Expanding Stf into a series overe
and assuming a homogeneous initial distributionf ut=0, the
resulting corrections to “homogeneous” solution(6) are of
higher order ine. Hence, they were not considered further.
Also, we neglected the motion of heavy particles, which for-
mally corresponds to a zero light-to-heavy particle mass ra-
tio, m/M→0. In fact, the kinetics of light particles is not
altered significantly provided the rate of energy exchange,
which is,sm/Mdktcolll−1 [14], is less than the energy growth
rate, ,e2ktcolll−1. This implies that the conditionm/M &e2

must be satisfied. Important remark: The studied above ex-
ample with ensembles of light particles was chosen solely to
simplify the algebra; it is not crucial. On the other hand, the
very fact that the particle energy is not conserved in mutual
collisions is auniversal intrinsic feature peculiar to any en-
semble with variable charges. The mechanism of the energy
growth should therefore be generic and apply to different
ensembles as well(e.g., “monodisperse” particles).

E. Numerical calculations

In order to verify the obtained theoretical results we per-
formed 2D molecular dynamics simulations of a Yukawa
system of particles with variable charges. The particles were
divided into two groups and randomly distributed over a
square of sizeL=1 cm: 5000 “large”(motionless) particles
with constant chargesQ=33104e and 5000 “small”(mov-
able) particles with an initial(isotropic) Maxwellian velocity
distribution and charges depending linearly on the
z-coordinate, withq=33103e at the left boundaryz=0. Pe-
riodic boundary conditions were chosen for the particle ve-
locities atz=0 andz=L. The transverse boundaries,y=0 and
y=L, were “mirror walls.” The screening length for the
Yukawa interaction wasl=30 mm (about one third of the
mean interparticle distance). Figure 1 shows the mean kinetic

energy of “small” particles,Ẽ (normalized to the initial tem-
perature), as function of time for different values of the
charge gradiente. Of course, the mean energy remains con-
stant without the gradient. For finitee, the energy scales
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initially as Ẽ~e2t, in agreement with Eq.(10). The computed
magnitude of the energy growth coincides with the theoreti-
cal prediction as well[given the combination of the scatter-
ing constantsc1,2,3 in Eq. (10) equal to.0.5]. In agreement
with the theory, the drift part of the kinetic energy rapidly
decreases in the simulations after a few collisions(at t
&10−1 s for this example) and is negligible at later stages,
K&10−2E. Therefore, the plotted curves actually show the
thermal partT of the mean energy.

III. CONCLUSIONS

In conclusion, we investigated the kinetics of particle en-
sembles with variable charges. Those are non-Hamiltonian
systems, and the total energy is not conserved in mutual
particle collisions. We focused on the case of inhomogeneous
charge distribution—when the equilibrium charge depends
on the particle coordinate—and derived the collision integral
which describes the momentum and energy transfer in colli-
sions. Solution of the resulting kinetic equation shows that
the system is unstable—the mean thermal energy exhibits
explosionlike growth, diverging at a finite time. The obtained
solutions can be of significant importance for laboratory
dusty plasmas as well as for space plasma environments,
where inhomogeneous charge distributions are often present.
For instance, the instability can cause the dust heating in
low-pressure complex plasma experiments and be respon-
sible, e.g., for the melting of plasma crystals, or might oper-
ate in protoplanetary disks and, thus, affect kinetics of the
planet formation(e.g.,[19]), etc.

Concerning the energy source providing the instability
(divergence of thermal energy) in ensembles with variable
charges, we point out that charged grains can be considered
as a subsystem of elementary charges(electrons and ions)
“bound” to the grains, which along with the subsystem of
“free” plasma charges forms acomplete ensembleof charges.
Even if the complete ensemble is in detailed balance and can

be considered as a Hamiltonian system, there is a continuous
exchange of energy between these two subsystems via the
charging processes, so that the charged grains cannot be de-
scribed by a Hamiltonian function. In addition, there always
exist external sources(e.g., inhomogeneous ionization, UV
radiation, etc.) which provide the energy influx into the
whole system of charges including the subsystem of grains.

APPENDIX: VARIATION OF ENERGY
IN COLLISIONS

Let us consider how the energy of a moving particle
changes while it passes by a motionless particle. If the po-
tential distribution around the motionless particle isFsr d and
the charge of the moving particle is a certain function of
spatial coordinates,qsr d, then the variation of the particle
energy is

dE = −E
C

q=F dr =E
C

F=q dr , sA1d

where the integration is taken along the trajectoryr C of the
particle. In Eq.(A1) we took into account thatqF equals
zero at the ends of the pathC. Assuming constant charge
gradient pointed along thez-axis, we rewrite Eq.(A1) as
follows:

dE = u = qu E Ffr Cszdgdz= u = qukFlLz.

Here angle brackets denote the average ofFsr Cd, andLz is
the displacement of the particle along thez-axis “during” the
collision. Thus, the calculation ofdE is essentially a me-
chanical problem of determining a particle trajectoryr C.
Generally speaking, this is a rather complicated task(see,
e.g.,[20,21]), and for purposes of this paper we just perform
a scaling analysis based on asymptotic characteristics of the
interaction between highly charged particles.

The electrostatic potential of a charged particle in a
plasma is normally of a short range, because the particle is
screened. For sufficiently high particle charges the pair inter-
action is usually reduced to the limit of elastic hard spheres
[15,22,23]: For instance, for the screened Coulomb
(Yukawa) potential one can approximate the interaction by a

FIG. 2. Sketch of the particle interaction during the collision.

FIG. 1. Mean kinetic energy of particles,Ẽ (normalized to the
initial temperature), versus timet. Curves correspond to different
values of the dimensionless charge gradient:e=0 (constant charge,
1), e=10−2 (2), ande=1.5310−2 (3).
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collision of a pointlike particle of energyE with a sphere of
radiusa.l lnsqQ/lEd and the “elasticity depth”,l, pro-
vided the radiusa is much larger than the screening lengthl,
i.e., lnsqQ/lEd@1. Figure 2 shows the sketch of such an
interaction. Assuming scattering within the elasticity depth,
the effective length is estimated asLz,lSscosu+cosu8d,
where S is a function of the scattering anglea. Also, the
average electrostatic energy for such interaction is of the
order of the kinetic energy, i.e.,qkFl,E. Therefore, we
have the following estimation for the relative variation of the
energy:

dE/E , escosu + cosu8dSsad, sA2d

wheree= u=q/qul!1 is the smallness parameter introduced
in Eq. (2). The energy gain is positive if the particle displace-
ment during the collision is in the direction of the charge
gradient, and is negative in the opposite case. Note that such
a representation of collisions is not valid at very small scat-
tering anglesa&l /a!1. Nevertheless, since the collision
cross section does not have singularities at smalla, one can
use Eq.(A2) to estimate magnitudes of the Fokker–Planck
coefficients[Eq. (4)].
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